

AI Network Architecture Paper
A blockchain designed to manage P2P computation cloud

Last updated on June 29th, 2019

Contents

1 Introduction 1

1.1 Vision 1
1.2 Background 2

2 System Architecture 3
2.1 Deep Computing Architecture 3

2.1.1 Overview 3
2.1.2 History 3
2.1.3 Technical Challenges 4
2.1.4 Execution Correctness and Solution Correctness 5

2.2 Solution 6
2.2.1 Secure Runtime Environment 7
2.2.2 Big Storage 8
2.2.3 AIN Blockchain Protocol 8
2.2.4 Machine Learning Patterns on AIN protocol 18
2.2.5 Security 21

3 Sample User Experience 23

1 Introduction

1.1 Vision
Build a global computer network where anyone can provide and compose cutting edge solutions
with open access to shared computing resources in a cost-effective way.

1

1.2 Background
There is a plethora of cloud-based managed computing platforms operated by large companies
such as Amazon, Google, IBM, Microsoft, etc. By leveraging economies of scale via
centralization, these companies provide cost-effective computing solutions for enterprises.
However, the rigidity of such centralized resource management serve as a barrier to entry for
individual developers and small-scale research groups. The following are the three major
challenges of AI development in a resource constrained environment.

First, large-scale Machine Learning (ML) problems are often expensive and requires complex
settings. When cutting-edge ML research papers are published, results are often difficult to
replicate. Even when results are replicable, it can sometimes takes a very long time to train the
models. In our platform, runtime environments are shared together with code so that anyone
can efficiently access and improve ML solutions.

Second, private clouds established by small research groups or companies do not operate
cost-effectively. In addition to research, private clouds are needed for running ML jobs across a
diverse range of domains. Once a private cloud is set up, it's often the case that only a small
number of researchers use this cloud at any given time. This means cloud resources are not
always fully utilized. We would like to provide ways to save idle computing resources in a form
that they can be utilized later when it's needed. For example, if one lends its computer power
during the night, it can run 2x computer power during the day.

Third, big AI companies often reserve their most powerful resources primarily for themselves
first. For example, these companies may make new hardware accessible only to privately
selected customers before general release. In such cases, small customers may have no other
option than to accept the vendor's policy even though it doesn't fit well to the customers' needs.
We propose a neutral market where innovative solutions can be run and sahed independently
from central providers.
We believe that blockchain can provide this neutral market for sharing computing resources
without the limitations of centralized vendors. Here are some of the benefits that different
participants of blockchain network can gain:

1. Miners can run jobs which may be more profitable than mining.
2. Researchers can easily access state-of-the-art solutions and run them effortlessly.
3. Server Farms can reduce resource idle time and maximize the performance during

active time.

By exploiting the key properties of blockchain such as transparency and decentralization, we
want to make a paradigm shift from dedicating massive amounts of computing resources to
mining (i.e., running identical hash operations in parallel) to building a federation of distributed
computing resources that solves real-world computing problems.

2

2 System Architecture

2.1 Deep Computing Architecture

2.1.1 Overview
In this section, we will outline the technical details of Deep Computing Architecture. This
architecture is a distributed P2P cloud that can solve large heterogeneous problems with
minimal centralized control. At the center of the blockchain protocol, AIN cryptocurrency makes
massive-scale computing accessible by allowing participants to spread and trade computational
jobs amongst themselves. We take a hybrid approach to decentralization, combining the
inherent decentralized characteristics of blockchain with centralized helper components (Secure
Runtime Environment and Big Storage) for trustful distributed computing of high performance.
We will discuss how to identify and trust the computation power of distributed machines with
disjoint ownerships so that they can be assigned with proper jobs and rewarded with AIN.

2.1.2 History
Ethereum, a blockchain app platform, may be the most popular solution for solving centralized
computing problems to date. Ethereum is often considered to be a "World Computer", in the
sense that it runs smart contracts which no central entity can shut down. Ethereum also
provides ​ the Turing-complete​ ​virtual machine​. This in principle allows any computational
problem, including ML problems, to be solved through Ethereum. While we honor the value of
pure P2P systems, we have a slightly different opinion about Etherium's roadmap roadmap for a
"World Computer."

In the vision of a fully decentralized web by Taylor Gerring, the co-founder of the Ethereum
Foundation, three key components are mentioned: Contracts (decentralized logic), Swarm
(decentralized storage), and Whisper (decentralized messaging).

3

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Virtual_machine

Figure 1. Interaction including Ethereum contracts, Swarm storage, Whisper comms

However, even the most advanced decentralized storage is much more expensive and slower
than centralized storage. Furthermore, Ethereum smart contracts are too expensive and not
expressive enough to represent complex programs such as ML algorithms.
Practically, in a performance critical area, we believe that a decentralized ecosystem should be
able to embrace the efficiency of centralized entities. We acknowledge that a blockchain can
only contain small-sized information, so we let the blockchain take responsibility for establishing
trust between entities while letting trusted protocols provide the other necessary services..

2.1.3 Technical Challenges
While the present proposed architecture could be applied to a wide variety of computing
problems, we are initially focusing on the use of AIN for ML to explain the architecture with.
Sharing computing resources in a P2P network is much more complicated than in a centralized
system, as the former should be capable of dealing with various devices, different OS
environments, unstable connection between peers, etc. By constraining the problem scope to
ML, we distill the main challenges for AIN to the following:

1. Heterogeneous Job Assignment. Unlike homogeneous hash computations, we need to
be able to schedule and assign the requested jobs to appropriate computing nodes,
since ML jobs demand various combinations of memory, storage size and computational
hardware such as GPUs. How can we manage complex cloud computing environment
such as TensorFlow Cloud by assigning jobs to trustful computers at reasonable
operational costs?

2. Trust and Security. The AIN network needs a way of verifying that the provided codes
are harmless to the computation participants. Results of computational jobs also must

4

be evaluated to confirm that they are correct. In addition, the system needs to provide a
scheme to distribute the profits to the honest participants of a problem.

3. Computing and Network Performance. Due to the massive computation requirement and
large data size of ML jobs, P2P cloud used to be an unpopular choice for distributed ML
computing. Moreover, additional verification layers for trust and security can cause
significant performance loss compared to a centralized system, so there should be a
mechanism to minimize the verification overhead.

2.1.4 Execution Correctness and Solution Correctness
The main difference between Ethereum and Deep Computing lies in how computer resources
are allocated for work and evaluation. Ethereum uses Ethereum Virtual Machine (EVM) to
ensure the provided code is run correctly and sequentially. However, verifying every line of code
with every computer in the blockchain network becomes inefficient and expensive when we
apply the same approach to large applications. For instance, a large-scale optimization problem
such as a neural network in deep learning might consist of weights, parameters, and coefficients
which are not only great in size, but also dynamically change within a few iterations.

Figure 2. The graph shows performance limitation as operations require more peer consensus

We are normally not interested in the values for this meta-data during interim iterations. Rather,
we want to see whether the final iteration produces a solution that satisfies the objective

5

function for the problem. In addition, processes of solving optimization problems usually
includes randomness which might not return predictable results. In this case, it might be
sufficient to track whether the model is approaching a satisfactory solution along some expected
performance curve.

For performance reasons, we adopted a worker / evaluator model where evaluators verify and
rank solutions returned by many workers. Evaluation methods can vary depending on the
problem characteristics. Some problems could be satisfied with a simple process that checks
whether a solution meets the specified boundaries, while others could utilize a competitive
process where evaluators accept the smallest loss in problem test data. Through customized
evaluation and verification functions, jobs can consume minimal amount of resources by
verifying what it needs. We roughly divided possible verification patten into three categories:
solution verification, checkpoint verification and execution verification.

1. Solution Verification. Although finding a solution for a NP problem may be extremely
computationally expensive, verifying the solution may be doable in polynomial time.

2. Checkpoint Verification. In order to monitor whether training operations are running as
expected, multiple checkpoints during the execution need to be verified. The increased
number of checkpoints can provide more solution credibility, at the cost of performance.

3. Execution Verification. One may want to make sure all the lines of codes are executed
properly. One obvious and easy way could be executing the same code again across
multiple machines. If results are replicable across different machines, this increases
credibility. Alternatively, more sophisticated techniques can be used for verifying the
code itself. However this verification normally takes more resources than solution
verification or checkpoint verification.

2.2 Solution
Our proposed "Deep Computing" solution is a decentralized computational platform that turns
GPUs in the network into a global problem solver. Traditional Von Neumann Architectures
require computers to contain a CPU, Memory, I/O, and communication between these
components. Similarly, we identified three key components we deem essential for a Deep
Computer: a secure runtime environment (centralized resource isolation and code verification),
big storage service (decentralized storage system [doesn’t need to be fully P2P]), and
blockchain (decentralized RPC ledger for reputation control of machines).

6

Figure 3. Left shows Von Neumann Architecture and right shows corresponding Deep Computing
Architecture. Deep Computing including AIN protocol, Big Storage, Secure Runtime Environment
(SRE)

Blockchain defines communication protocol between nodes while tracking every public request
between nodes. Processing this information can provide a measurement for reliability of each
node, which we call reputation. It also gives reasonable control to centralized nodes and
maintains the performance and scalability of distributed computing. With this hybrid approach,
we can build a decentralized P2P cloud computation platform which is able to solve
various-sized problems in a reliable and efficient way. In the following section, we will describe
three main components: Secure Runtime Environment, Big Storage, AIN Blockchain Protocol.

2.2.1 Secure Runtime Environment
To secure user environment and run code on various environments, one needs to provide
dynamic sandboxing and enforce resource constraints. The Backend.AI team is the first
reference node that will provide a hassle-free backend for AI programming and services. It runs
arbitrary user code safely in resource-constrained environments, using Docker and its own
sandbox wrapper.

Backend.AI provides a streamlined backend API server that hosts heterogeneous programming
languages and popular AI frameworks. It manages the underlying computing resources for
multi-tenant computation sessions where such sessions are spawned and executed instantly on
demand.

Backend.AI supports various programming languages and runtimes, such as Python 2/3, R,
PHP, C/C++, Java, Javascript, Julia, Octave, Haskell, Lua and NodeJS, as well as AI-oriented
libraries such as TensorFlow, Keras, Caffe, and MXNet. The implementation details can be
found in​ ​https://github.com/lablup/backend.ai​ and more frameworks and languages will be
added in parallel with this project.

7

https://github.com/lablup/backend.ai
https://github.com/lablup/backend.ai

Secure Runtime Environment contains Binary Manager whose role is to authenticate, deploy,
and update binaries once they are distributed to the network. When new binaries are released
by an admin, Binary Manager notifies the evaluators and the workers to download the new
binaries from the Secure Runtime Environment.

2.2.2 Big Storage
Usually an ML job requires problem solving of large-scale input / output data. Furthermore, ML
jobs run through decentralization requires efficient data transfer between the network nodes. As
such, blockchain itself is not a good solution for storing ML job data, as the blocks are
designed to have a limited size for efficiency. Instead, AI Network team will provide a general
storage service, what we call Big Storage, that can be used for any type of data sharing or
transfer between the nodes. For example, the client can share the input data with the workers
and the evaluators, and the workers can share the output data with the client.

For performance reasons, Big Storage is a centralized service that aggregates and allocates
different storage services that service providers offer. However, its name service is designed to
be universally visible from the blockchain API so that the API allows call-by-reference with only
the data path in the storage space. Every node on the blockchain network needs to reserve
appropriate space in Big Storage by paying fees to the storage service provider prior to the
initiation of an ML job. For instance, an admin will reserve a space for the job scheme, a client
will reserve space for the training and test data, and an evaluator and a worker may need to
reserve temporary space during the job execution. The size of the available space in the
storage space owned by the workers can be referenced by admins for job-worker matching, as
some jobs require a certain amount of available storage for the output data.

Basically Big Storage will serve content-addressed storage, i.e., the address is generated by
applying a cryptographic hash function (e.g. SHA-2) to the uploaded content. This approach is
good as 1) the shared data doesn't need to be updated once it's uploaded in most cases, and 2)
no context on the data (including the owner) needs to be exposed in the address.

For the clients who want to encrypt the uploaded data, Big Storage and Blockchain Protocol will
provide appropriate encryption and decryption functionalities as well as secure ways to share
the decryption keys only with those involved in solving the problem.

When files are created in Big Storage, the file owners can specify the ttl (time to live) of the
created files so that they can be automatically deleted after a specified period. This will facilitate
efficient management of storage utilization.

2.2.3 AIN Blockchain Protocol
1) Terms

8

Role
While each node is responsible for maintaining and validating blocks, nodes can also play
certain roles for registering and executing other jobs. There are four types of roles in the AIN
blockchain: admin, evaluator, worker, and client. The node who registers a new job schema is
the root node, and as such is always an admin node.

● Admins can accept other admins, evaluators, or workers. Admins can also hold the roles
of worker and evaluator.

● Evaluators validate solutions returned by workers, and assesses the workers'
performance. Workers might receive different rewards depending on the results of the
assessment and the reward function given by the client.

● Workers execute operations and return solutions.
● Clients request job execution to evaluators and workers, and offer rewards.

Depending on delegation policy, Jobs can be centralized where only one root admin can
validate the solution, or scales faster by replicating admins in many places who can accept
more workers.

Job Schema
An admin defines a job schema in proto3, and submits its implementation to the binary
manager. This schema will eventually be run by elevators and workers. The deployment of the
binaries are done by the binary manager, as specified by the owner of the job schema.

Reward
An evaluator validates the results of the workers and assesses the worker's performance as a
whole. Rewards are defined through a "reward function" and associated function parameters in
the job request. For instance, a reward function may be defined as evenly distributed or as
winner-only, depending on the types of problems and the client's preference.

The client needs to prepare a proper strategy when choosing a reward function and function
parameters to optimize the cost. AI Network team will provide a few example reward strategies
for some of the common use cases.

Deposit
When an evaluator accepts an offer from a client, the evaluator is required to deposit a certain
amount of credit. The deposit will be sent to the client if the client can prove the evaluation result
was not correct. Deposit must be larger than the fees needed for challenging the evaluation
result to the parent node. The details of the challenge process will be explained in a subsequent
section.

Fee
Transaction fee exists to prevent from sending a lot of transactions in the purpose of failing the
network without any cost. Since AI Network transactions are requests and responses for
general purpose application, bandwidth allocation makes more sense than charging a fee for

9

each transaction. Holding tokens give the node to perform operations in the network, and a job
can allocate some tokens to secure bandwidth it requires.

2) Reputation in Blockchain
The blockchain manages ledgers for communication between nodes. This communication
includes registration of nodes, offering jobs, accepting jobs, returning results of jobs, evaluating
the results, and distributing rewards. Blockchain maintains the specification of API,
authentication and ranking of the nodes, offers and acceptances of the jobs, and reward
distribution. By tracking this information, we can measure the reputation of each node. Node
structure is hierarchical, where the root node has the highest authority to say the solution is
correct. Thus, we call it the Reputation Tree (RTree).

Figure 4. Blockchain can process multiple jobs, and users provide rewards to evaluator and
worker for the provided result. Depending on the admin's node expansion policy, it can have
multiple admins or multiple evaluators

3) Blockchain API
assignAddress
A new address is assigned to the node. This is similar to creating a wallet in a typical
blockchain. Public Key and Secret Key are generated. No Job can be run or managed yet.

registerJob​ signed by admin

10

Register a new Job specification. The unique job ID will be created.

PARAMETER

job_specification (proto)

The information about data, evaluator, and
worker service.

RETURNS

job_id(string) Unique job ID.

applyJob​ signed by node
A node applies for a job. The node can apply for the role of either admin, evaluator, and worker.

approveNode​ signed by admin
When a node applies for a job, an admin node evaluates whether it can truly run the provided
functionality using test data. If the admin is satisfied, the node is added as a child of the admin
node.

requestJob​ signed by client
A client sends a job request to the blockchain network. A list of rewards is locked in the
blockchain until the final evaluation is produced. If job_input is large, complementary data
storage can be provided by AI Network team. If client specifically trusts certain evaluator or
worker nodes, the client can specify these nodes.

PARAMETER

job_id (string) A unique id of the job to be executed.

job_input (serialized_proto) The input data to the job. It may contain
pointers to big storage.

reward (Function) A reward function that will be given to the
ranked worker

time_limit An expected duration of job execution, in
milliseconds, after an evaluator accepts the
job.

evaluator_node (list) [optional] Candidates that are allowed to participate in
the evaluation process.

11

worker_node (list) [optional] Candidates that are allowed to participate in
executing the job.

skip_evaluation (boolean) [optional] When a client completely trusts a worker
node, the client may skip evaluation. The
default value is false.

RETURNS

transaction_id(string) Unique ID for created transaction.

acceptJob​ signed by worker/evaluator
Workers or evaluators can accept a job request if and only if they meet the criteria of the job.
The data of the job request can be encrypted and ACL (Access-Control List) controlled. This will
make the data only visible to the workers who accepted the job. The client may reject a worker
if it doesn't like the worker's reputation.
Workers can also take reputation of other workers into account when deciding whether to
execute a job or not. For example, if a job gives the reward to only one worker who produced
the best result, other workers might resign if highly competitive workers have already accepted
the job.

submitResult​ signed by worker
Workers produce results and output these results onto the blockchain. The result might be
recorded in the complimentary storage if it is too large. The storage provides data integrity at
solution submission time.

rank​ signed by evaluator
After the job time limit has expired, the evaluator sorts the result and assigns a rank to each
worker.

acceptResult​ signed by client
If the client is satisfied with the result, it accepts the result and promised rewards are distributed
to the workers.

challenge​ signed by client
If the client or one of the contracted workers thinks the evaluation result is wrong, it can request
a re-evaluation to the parent node. A challenge requires an additional fee, but this fee is
compensated by the evaluator's deposit in the event that the evaluator was truly wrong.

drop​ signed by admin

12

An admin node can drop one of its children if it thinks that the node is being dishonest. Dropped
nodes cannot execute jobs any longer. Approving and dropping follows a certain rate limiting
rule to prevent unexpected, injudicious drops.

send
A typical protocol to send coins between nodes.

4) Scenarios

13

Figure 5. The diagram shows how jobs are registered and executed. The rewards for evaluators
(E) and workers (W) are reserved in the network until the job is completed. Evaluator needs to
deposit credit (D) to make sure it returns correct result.

14

Initialization Phase
1. Admin broadcasts a job schema to blockchain. The binary to be used for the job schema

is published in Secure Runtime Environment, and related data are stored in Big Storage.
2. Evaluators who are interested in the job schema apply for the job schema. They

download the binary from Secure Runtime Environment and data from Big Storage to
test out whether they are capable of evaluating the job.

3. Admin approves Evaluators once it verifies Evaluators are eligible for the job schema.
4. Workers who are interested in the job schema apply for the job.
5. Admin approves eligible workers.

Execution Phase

6. Client requests a job with rewards for evaluators and workers. Rewards are reserved on
the blockchain network until the solution is returned.

7. Evaluator approves the requested job and reserves deposit on the blockchain network.
8. Workers accept and start job execution.
9. Workers return the results.
10. Evaluators evaluate the results.

Resolution Phase
At this point, Client can either accept (11) or challenge (12) the solution.

11. Client accepts the result. The reserved rewards are distributed to workers and
evaluators.

12. Client challenges the solution. If Admin accepts the challenge (12-1), Client receives
reward and deposit. If Admin rejects challenge (12-2), Client can either challenge again
or rewards are distributed to workers and evaluators.

15

5) Execution Details

16

Figure 6. The diagram shows how jobs are evaluated or executed in a node's computer. The node
identifies profitable jobs using blockchain and dashboard and participates in PoW if no profitable
job is available.

When the node joins the blockchain network, it will start receiving all blocks from its peers to
establish valid Blockchain State. After initialization, it will monitor transactions broadcasted
through the network and update the Blockchain State. Blockchain State contains Job pointers
and Job Status, and the node can use them to find suitable jobs it can run in Dashboard. If
some jobs are promising, it downloads the environment and binaries from Secure Runtime
Environment. Machine State tracks computational powers and resources available and filters
jobs that can be executed immediately. The node receives updates about job statistics and
decides which jobs to run. After the node finishes the job, it uploads the job result to the Big
Storage and broadcasts a pointer to the blockchain network.

6) Configurable Permissions and Consensus Protocols
AI Network blockchain uses Proof-of-Stake (PoS) for its main consensus protocol, which is
influenced by Tendermint's BFT-based consensus algorithm. A major difference between AIN
blockchain and Tendermint in terms of consensus protocols is that on AIN blockchain, it is the
rules that drive the consensus process. The rules also specify who has the permission to
change the process. The rule-driven architecture and the tree structure of the state make having
multiple consensus protocols on AIN possible. In other words, the main consensus protocol
dictates how blocks are forged on the main chain; however, each shard of the blockchain that
manages only a subtree of the global state tree has the freedom to configure its own consensus
rules.

This means that if an app uses AIN blockchain as its database and wants to apply a different
consensus algorithm for updating its db, for instance increase the number of validators, the
nodes who have the permission to write the consensus rules for the shard may change the
protocol within their network. The changes may need to be approved by a certain number of
nodes that participate in maintaining the shard, depending on how the rules are set.

The configurability of consensus protocols respects the needs and decisions of the groups of
nodes that want to manage particular segments of the global state. More importantly,
configurable permissions and consensus protocols allow a new sharding mechanism to be
adopted where each shard manages its own partition of the state tree and even the main
blockchain doesn’t need to keep track of all the data in the partitions. Consequently, the time to
reach consensus shortens, and the amount of data that a node has to store decreases
significantly as well.

7) Dashboard
By analyzing the transaction data in blockchain, the AI Network team will provide statistics for
nodes and jobs. Admins, evaluators, workers, and clients can refer to these extensive statistics
to decide whether to apply for jobs or accept applications.

17

For example, metrics could be profitability of job, the number of jobs processed, response time,
acceptance / rejection ratio, and the number of managed nodes. Information like performance
ranking could also be made available. One of the rating systems we consider is Elo rating where
relative computation power is measured when two machines worked on a job together. Also,
metrics can be configurable, and each job owner may want to make their own metrics which
meet the characteristics of their job.

2.2.4 Machine Learning Patterns on AIN protocol
AIN protocol's job definition is general enough to accept a large spectrum of inputs and outputs.
Although it is not limited to ML purposes, we will discuss possible patterns of ML using AIN
protocol to help understand its usefulness. The examples here are limited to basic principles, so
it could be used with more sophisticated techniques in the practices.

1) Distributed Computing
Blockchain tracks the communication between nodes, but does not have features for job
management or auto-scaling. Despite this, the ultimate goal of this infrastructure is to distribute
and assign jobs efficiently. Broadly speaking, we can make use of this infrastructure for
distributed computing in two ways. We will provide basic boilerplate code for distributing jobs.

First, a client can break down the job into small jobs and send multiple job requests to multiple
targets. Tensorflow provides strong support for breaking down tensor graph into multiple pieces
and runs the training on different devices or machines. Since sending job requests to
blockchains is asynchronous and the result will be returned within a specified time limit, a client
can contact with multiple evaluators to process the small jobs. If designed properly, even
merging partial jobs into one can be done by using different job schemas on the blockchain.
However, job distribution techniques should be implemented by a client using its own code. We
believe our infrastructure is flexible enough to accommodate different types of job distribution
methods. The AI Network team will provide references for how well-known distribution
techniques can be implemented using Blockchain APIs.

Second, one node can be composed of multiple computers. One node doesn't have to be
always one computer. To get popularity in the blockchain, some nodes want to maximize their
power by using their own computation cloud. There might be different implementations for the
same job schema if the ML environments are various. The AI Network team will also work hard
to provide a centralized cloud for processing large ML problems. The blockchain is not the only
mechanism for getting attention from clients. Each node can have its own marketing channel by
exposing their node pointer externally from the blockchain. For example, the AI Network team
can be trusted not only because of jobs processed in history, but also by other resources such
as code repository, or well-structured homepages that reveal the developer's identity. However,
AI Network team's node is also competing under the same rule, and there's no guarantee that it
will become one of the more popular nodes on the blockchain.

18

2) Optimizing Loss function

Assume we want to optimize locally convex loss function L(w) where w is initial weight vector
with random values. If workers use gradient descents, it will try L(w) -> 0 by randomly changing
w with w := w – a (dL(w)/dw). Evaluator receives the results of workers and gives the highest
reward to the worker who satisfied L(w) ~ 0.

Figure 7. Optimizing loss function on AI Network

3) Data Parallelism
One way to achieve data parallelism using AIN protocol could be to use the client as a
parameter server. Big Storage contains data shards of the input data that will be replicated in
different locations such that data transfer time is optimized between workers and storage. In
this scenario, the client asks multiple evaluators with information necessary for training such as
pre-trained weights, model replica address, and data shard address, and evaluators will return
the trained result. Then the client updates weights and sends the reconciled weights to the
evaluators.

19

Figure 8. Parallel training on AI Network

4) Reinforcement training: AlphaGo case
In AlphaGo case, an evaluator can be a self-play function, where it conducts N rounds of
self-plays with the policy network and the value network given by workers. The workers will be
rewarded in the order of the ranking after self-plays. Then, the self-play data can be stored in
Big Storage and shared with other workers for retraining purposes.

Figure 9. Reinforcement training on AI Network

20

5) Running custom code
Instead of deploying worker and evaluator codes, a client may want to get the execution result
of custom code. In this case, evaluators' job is to make sure codes were run correctly by
workers. Depending on the job's purpose and how evaluators and workers established their
trust, the verification process may require full control over worker's hardware configurations, or
verification functions or logs may need to be injected into the code. Establishing secure code
execution environments is another big research topic, so we leave this up to the job schema's
owner.

2.2.5 Security
1) Resource Protection

All nodes that run Blockchain are recommended to download docker container and binaries
from AI Network team's repository. AI Network team will try hard to provide a trustful docker
repository with various configurations. Currently supported ML configurations, libraries, and
programming languages are well outlined in​ ​https://backend.ai/#/ground​.

Docker restricts access and resource consumption over CPU, GPU, Network, Disk, and
Memory. Although docker is a good distribution platform, it's not a security platform. It is
recommended to run docker in isolated VM environment if user's PC contains sensitive
information.

2) Binary Signing
A job schema must include a public code repository URL (GitHub, Bitbucket), and the repository
should be built using AI Network team's builder with signing (i.e Google Container Builder).
Through this signing process, we guarantee that the binary is built from our environment and
that a code pointer is provided. However, it does not fully scan the code to detect
maliciousness. It's up to the client to decide whether to trust publicly opened code or not. We
recommend users not to run binaries from unknown sources unless the user has enough insight
to distinguish whether the provided code is malicious or not.

3) Connection Security
All nodes in the blockchain communicate using the blockchain standard API. Docker Containers
only allow blockchain's broadcasting channel and traffic from Big Storage if the job requires
additional storage.

4) Data Security
Big Storage provides a global file name service to the blockchain nodes and is ACL-controlled
by only valid nodes. We believe this will facilitate a service capable of competing in both
performance and security with amazon s3 or google cloud storage.

However, since workers and evaluators both have access to the data, data preprocessing is
always required in order to protect any sensitive information from these workers and evaluators.

21

https://backend.ai/#/ground
https://backend.ai/#/ground

For example, instead of providing raw data including sensitive information, shuffling and
encrypting feature vectors would be safer. Also, we recommend input or neural networks size
be modified to some meaningless number. For example, if the size of an input vector is 19 x 19,
it would be very easy to guess you are solving Go problems.

We cannot prevent nodes from copying and transferring provided data. Therefore, if a client
wants to evaluate workers with a separate data set from the training data, the test data set
needs to be revealed at some future point in time. For example, if workers are provided with a
training data set and evaluators are provided with a test set, the test set must be revealed after
all the workers return their results. Otherwise, there is a possibility that an evaluator will expose
the test data set in advance to a worker, and the worker can then try overfitting to the test data.

5) Compromised Node Scenarios
In this section, we explain attacking scenarios for each node type. Besides blockchain's security
features, dashboard helps in detecting any fraud and punishing perpetrators of such fraud
properly. However, there are certain security risks and loopholes that are out of scope in this
architecture by design.

6) Admin
Admin nodes are the most powerful nodes in any job. Thus pose the greatest risk when
compromised. Since the AI Network team manages binary releases of jobs in the docker
repository, we recommend users to run only authenticated binary, especially in the early stages
of the system.

An admin may attack the network by reproducing lots of admins beyond what it needs. However
blockchain and P2P networks are known to be good at handling this type of denial of service
attack. An attacker will need to pay large fees for making this large number of transactions.

If an admin is challenged a lot during job execution, people may think this job's processing is
unstable and may contain malicious nodes. Using this approach, one may try lots of challenges
to bring down an admin's reputation. However, making challenge requires fees and other nodes
can always verify whether the challenge was legitimate since communication is open to
everyone.

On the other hand, an admin may try to increase its reputation by solving self-generated valid
jobs. However, it will require a large amount of fees to generate false operation, and the number
of jobs solved is just one metric to gauge reputation.

7) Evaluator
If the evaluation result is not correct and the challenge from the client is successful, the client
will receive the evaluator's deposit. The client cannot do DDoS attack on evaluators directly
since there is no direct connection established between them. The evaluator and client are
communicating using blockchain's broadcasting channel.

22

If an evaluator is not very responsive, the response rate of the evaluator in the dashboard will
be bad, which results in a bad reputation. In addition, an evaluator runs the risk of being
dropped by its parent if it is not working as expected.

There might be some cases where a good node is dropped without any reason. In that case, the
dropped node can work alone instead of working for the parent node by being root of the same
job. If the old admin is notorious for dropping nodes without any reason, people might prefer the
newly created node.

8) Worker
Incorrect results from workers will not be accepted by evaluators, and it's also possible that the
worker fails to give any results within the specified time limit. The worker who does not accept
an evaluation result can initiate a challenge. However, if the workers challenge is not accepted
after multiple attempts, the reputation of workers may also drop.

A client may assign very difficult jobs such that no worker can solve these jobs. This might be a
useful strategy when the client only wants to know whether the size of the problem is solvable or
not. In this case, the client will send a reward to the evaluator only. If this is not by job design,
the one who designed the job needs to question its evaluation logic. If there are many nodes
like this, workers will eventually lose interest in these jobs since they cannot earn proper and
fair rewards. Good evaluation logic should be able to give proper rewards to workers who have
honestly executed the provided job. Suppose there is an evaluator which accepts the answer if
hash(x) = y, and there is a worker who runs x = rand(). If probability of hash(x) = y is very low
compared to the reward, worker will not try to run this job anymore. In contrast, suppose f(x) = y
and x = g(y), where f(x) = y is the evaluation function, and x = g(y) is the problem to be solved
by the worker. If g is deterministic and can be easily run within polynomial time, it is attractive to
workers since its reward is predictable.

3 Sample User Experience
Calculate Root
Given y, find x that satisfies x * x = y.
Suppose the worker is not smart enough so that it can only guess the answer using rand(). The
client wants to give all the reward to the one who returned the closest answer. The simplest
execution using console will look like the following:

23

$ connect AIN
AIN> registerJob job_schema.proto worker.py evaluator.py
Registration complete. Job ID is 0xabcde.
.. wait for propagation ..
AIN> stats 0xabcde
3 evaluators, 100 workers running.
AIN> requestJob {job_id: 0xabcde, job_input: {y: 4}, reward: [10, 10], time_limit: 3000}
X: 2
Total 12 workers participated. Evaluator (0xfghij) received 10, worker (0xklmn) received 10.

Sample job_schema.proto

// The greeting service definition.
service Worker {
 // Sends a greeting
 rpc CalculateRoot (Request) returns (WorkerReply) {}
}
service Evaluator {
 // Sends a greeting
 rpc EvaluateRoot (Request, Workers) returns (EvaluationResult) {}
}
message Request {
 float y = 1;
}

message WorkerReply {
 float x = 1;
}

message Worker {
 string node = 1;
 WorkerReply response = 3;
}

message Workers {
 repeated Worker workers = 1;
}

message EvaluationResult {
 repeated node = 1; // returns highest ranked worker first. drops invalid worker.
}

Sample worker.py

24

class Worker(helloworld_pb2_grpc.WorkerServicer):
 def CalculateRoot(self, request, context):

y = request.y
min_loss = y
for i in range(100):

 x = random.random() * request.y
 loss = abs(y - x * x)
 if min_loss > loss:
 min_loss = loss
 best_x = x

return best_x

Sample evaluator.py

class Evaluator(helloworld_pb2_grpc.EvaluatorServicer):
 def EvaluateRoot(self, request, context):

// sorting function omitted. Sorted by the closest answer.
nodes = [worker.node for worker in sorted(workers)]:
return nodes

25

// The greeting service definition.
service Worker {
 // Sends a greeting
 rpc CalculateRoot (Request) returns (WorkerReply) {}
}
service Evaluator {
 // Sends a greeting
 rpc EvaluateRoot (Request, Workers) returns (EvaluationResult) {}
}
message Request {
 float y = 1;
}

message WorkerReply {
 float x = 1;
}

message Worker {
 string node = 1;
 WorkerReply response = 3;
}

message Workers {
 repeated Worker workers = 1;
}

message EvaluationResult {
 repeated node = 1; // returns highest ranked worker first. drops invalid worker.
}

Sample worker.py

26

class Worker(helloworld_pb2_grpc.WorkerServicer):
 def CalculateRoot(self, request, context):

y = request.y
min_loss = y
for i in range(100):

 x = random.random() * request.y
 loss = abs(y - x * x)
 if min_loss > loss:
 min_loss = loss
 best_x = x

return best_x

Sample evaluator.py

class Evaluator(helloworld_pb2_grpc.EvaluatorServicer):
 def EvaluateRoot(self, request, context):

// sorting function omitted. Sorted by the closest answer.
nodes = [worker.node for worker in sorted(workers)]:
return nodes

27

